

NASDAQ: IBRX

Overview Presentation

June 2022

Forward-Looking Statements

This presentation and the accompanying verbal remarks contain forward-looking statements within the meaning of the Private Securities Litigation Reform Act of 1995. Statements that are not statements of historical fact are considered forward-looking statements, which are usually identified by the use of words such as "anticipates," "believes," "continues," "goal," "could," "estimates," "expects," "intends," "may," "plans," "potential," "predicts," "indicate," "projects," "seeks," "should," "will," and variations of such words or similar expressions. Statements of past performance, efforts, or results of our preclinical and clinical trials, about which inferences or assumptions may be made, can also be forward-looking statements and are not indicative of future performance or results. Forward-looking statements are neither forecasts, promises nor guarantees, and are based on the current beliefs of ImmunityBio's management as well as assumptions made by and information currently available to ImmunityBio. Such information may be limited or incomplete, and ImmunityBio's statements should not be read to indicate that it has conducted a thorough inquiry into, or review of, all potentially available relevant information. Such statements reflect the current views of ImmunityBio with respect to future events and are subject to known and unknown risks, including business, regulatory, economic and competitive risks, uncertainties, contingencies and assumptions about ImmunityBio, including, without limitation, (i) whether the FDA will file and/or approve ImmunityBio's recently submitted BLA and the risks and uncertainties associated with the regulatory approval process, (ii) the ability of ImmunityBio to continue its planned preclinical and clinical development of its development programs, and the timing and success of any such continued preclinical and clinical development and planned regulatory submissions, (iii) ImmunityBio's ability to retain and hire key personnel, (iv) ImmunityBio's ability to obtain additional financing to fund its operations and complete the development and commercialization of its various product candidates, (v) ImmunityBio's ability to successfully commercialize its product candidates and uncertainties around regulatory reviews and approvals, (vi) ImmunityBio's ability to scale its manufacturing and commercial supply operations for its product candidates and future approved products, (vii) ImmunityBio's ability to obtain, maintain, protect and enforce patent protection and other proprietary rights for its product candidates and technologies, and (viii) the unknown future impact of the COVID-19 pandemic on certain clinical trials or their milestones and/or ImmunityBio's business operations or operating expenses. More details about these and other risks that may impact ImmunityBio's business are described under the heading "Risk Factors" in the Company's Form 10-K filed with the U.S. Securities and Exchange Commission ("SEC") on March 1, 2022 and the Company's Form 10-Q filed with the SEC on May 10, 2022, and in subsequent filings made by ImmunityBio with the SEC, which are available on the SEC's website at www.sec.gov. ImmunityBio cautions you not to place undue reliance on any forward-looking statements, which speak only as of the date hereof. ImmunityBio does not undertake any duty to update any forward-looking statement or other information.

MISSION: Innate and Adaptive Immune Memory

Goal: Durable Complete Remission & Prevention of Cancer and Infectious Diseases Induce Memory NK, T & B Cells

PLATFORMS: NK, T and B Cells Activators

DAMP Inducers	DNA Vaccine	RNA Vaccine	Recombinant & Cytokines	Toll Receptor Activators	NK Cell Therapy	
 Albumin Bound Chemo Modulators Tumor Associated Antigen Regulators 	hAd5 AdenovirusEDV Nabisome*	Self Amplifying RNA (saRNA)	 NK & T Cell Activators Subunit Protein Antigens 	• TLR 4, 7, 8, 9	NK-92Memory Cytokine NKMSC	

PRODUCT CANDIDATES:

Clinical Development From Each Platform

DAMP Inducers	DNA Vaccine	RNA Vaccine	Recombinant & Cytokine	Toll Receptor Activators	NK Cell Therapy
AldoxorubicinNanatinostat	 hAd5 MUC1 / Brachyury / CEA hAd5 PSA hAd5 E6 / E7 (HPV) hAd5 Spike + Nucleocapsid EDV EGFR* EDV Spike* 	saRNA SsaRNA S+N	 N-803 (Anktiva), IL-15 Fusion Protein Yeast Produced Recombinant RBD 	 3M-052 GLA SLA Squalene 	 haNK PD-L1 t-haNK CD19 t-haNK HER2 t-haNK m-ceNK

*Licensed through a binding term sheet. Definitive agreements pending

CLINICAL INDICATIONS: Selected Clinical Trials Under Development Per Product

• • •	Bladder Cancer (NMIBC) Pancreatic Cancer Lung Cancer Glioblastoma COVID-19 Vaccine HIV Therapy	N-803 + BCG Submitted BLA in May 23, 2022 N-803 + PD-L1 t-haNK + Aldoxorubicin N-803 N-803 + PD-L1 t-haNK + Aldoxorubicin hAd5 S+N, saRNA S, saRNA S+N, EDV Spike N-803
-------------	---	--

Select Active Clinical Trials in Oncology

Solid Tumors	Phase	Target Indication	Preclinical	Phase I	Phase II	Phase III	
	2	BCG Unresponsive NMIBC CIS (Cohort A)BLA SubmittedQUILT 3.032May 23, 2022	Single Arm, NMIB	C - Breakthrough	& Fast Track		NCT03022825
Bladder	2	BCG Unresponsive NMIBC Papillary (Cohort B) QUILT 3.032	Single Arm, NMIB	C - Fast Track			NCT03022825
	3	BCG Naïve – QUILT 2.005	Randomized, Pha	se 3, NMIBC			NCT02138734
	3	2L Non-Small Cell Lung Cancer (NSCLC) Checkpoint Relapsed and Refractory, LungMAP – S1800D (SWOG)	Randomized Phas	se 3, 2L Lung			NCT05096663
Lung	3	1L Squamous & Non-Squamous Non-Small Cell Lung Cancer Checkpoint Alone QUILT-2.023	Randomized Phas	se 3, 1L Lung Chem	no / Chemo Free		NCT03520686
	2	2L / 3L Non Small Cell Lung Cancer (NSCLC) Basket Trial Checkpoint Relapsed and Refractory QUILT-3.055	Multi-Arm, Phase	2, 2L & 3L			NCT03228667
	2	3L Metastatic Pancreatic Cancer QUILT-88 (Cohort C)	Single Arm, Phase	e 2 Pancreas			NCT04390399
Pancreatic	2	2L Metastatic Pancreatic Cancer QUILT-88 (Cohort B)	Randomized, Pha	se 2, 2L Pancreas			NCT04390399
	2/3	1L Metastatic Pancreatic Cancer QUILT-88 (Cohort A)	Randomized, Pha	se 2 / 3, 1L Pancre	as		NCT04390399
Glioblastoma	1/2	Recurrent Glioblastoma	Randomized, Plar	ned Phase 1/2, Gli	oblastoma		Pending
HPV	1	Human Papilloma Virus (HPV) – Anal, Cervical, Head & Neck	Single Arm, Plann	ed Phase 1/2			Pending
Solid Tumors	1	Advanced Solid Tumors, M-ceNK – QUILT-3.076	Single Arm, Phase	ə 1			NCT04898543

NMIBC - Non-Muscle Invasive Bladder Cancer, NCI - National Cancer Institute, QUILT - QUantitative Integrated Lifelong Trial, SWOG - Southwest Oncology Group, M-ceNK - Memory-Like Cytokine Enhanced Natural Killer

Select Clinical Trials in Infectious Diseases

June 2022

Infectious	Phase	Target Indication	Preclinical	Phase I	Phase II	Phase III	
	1	ACTG / NIAID: HIV Broadly Neutralizing Antibodies	Single Arm, Phase 1,	HIV			NCT04340596
нιν	2	Thai Red Cross & Walter Reed Army Institute of Research Reducing HIV Persistence by IL-15	Randomized, Phase :	2, HIV			NCT04505501
	1	National Institute of Allergy and Infectious Diseases (NIAID) / University of Minnesota Effect of N-803 on B Cell Follicles in Antiretroviral Treated HIV Disease	Single Arm, Phase 1,	HIV			NCT04808908
	1	Homologous: hAd5 S + N Platform, Prime & Boost in USA COVID-4.001 Cohort 1 & 2 (Subcutaneous: SC)	Single Arm, Phase 1				NCT04591717
COVID-19	1	Homologous: hAd5 S + N Platform, Prime & Boost in USA COVID-4.005 Cohort 1 & 2 (SC + Oral)	Single Arm, Phase 1				NCT04732468
	1	Homologous: 'The ProVIVA-SA1' Trial in South Africa COVID-4.007 hAd5 S + N Platform, Prime & Boost (Cohort 1, 2, 3 & 6)	Single Arm, Phase 1				NCT04710303
	1/2/3	Heterologous Mix & Match: 'SISONKE Universal Boost T Cell Trial' in COVID-4.010 South Africa Ad26 (Prime) + hAd5 S+N (Boost)	Multi-Arm Randomize	ed Study, Phase 1, 2, 3			
	1/2	Boost: Self Amplifying RNA (saRNA) Nanostructured Lipid Carrier (NLC) COVID-4.015 THEMBA 2 South Africa, saRNA Alone (Enrolling) COVID-4.016 THEMBA 3 United States (Hoag), saRNA Alone (Pending)	Single Arm, Phase 1				
	1/2/3	Boost: PULA Trial in Botswana (Pending) COVID-4.014 RBD Subunit Protein + 3M-052-Alum	Single Arm, Phase 1				

hAd5 - Human Adenovirus 5, saRNA - Self Amplifying RNA, SC - Subcutaneous, RBD - Receptor Binding Domain

ImmunityBio ImmunityBio: A Leading Immunotherapy Company

Square Feet of Manufacturing

R&D, Office and Corporate Facilities

June 2022

Patients Studied

*Licensed through a binding term sheet. Definitive agreements pending

NK + T Cells

 IL-15 Fusion Proteins Anktiva

Natural Killer Cells

- NK-92 Off-the-Shelf
- Autologous m-ceNK
- iNKT Cells

Memory B & T Cells

- Adenovirus
- Subunit Proteins
- Toll Receptor Activators
- saRNA

Late-Stage U.S. Clinical Trial Updates:

- Bladder Cancer
- Pancreatic Cancer
- Head & Neck Cancer
- Lung Cancer
- HIV
- COVID Vaccine

NK + T Cells

 IL-15 Fusion Proteins Anktiva

Natural Killer Cells

- NK-92 Off-the-Shelf
- Autologous m-ceNK
- iNKT Cells

Memory B & T Cells

- Adenovirus
- Subunit Proteins
- Toll Receptor Activators
- saRNA

Late-Stage U.S. Clinical Trial Updates:

- Pancreatic Cancer
- Head & Neck Cancer
- Lung Cancer
- HIV
- COVID Vaccine

"Trained immunity or innate immune memory enables innate immune cells to mount a more robust response to secondary non-related stimuli [N-803, the boost] after being initially primed (or trained) by a challenge such as BCG."

Jelmer H. van Puffelen et al. Nature Reviews 2020

N-803, an IL-15 Superagonist, Proliferates and Activates NK & T Cells, Providing the Secondary Stimulus (The Boost) to Trained Innate Immune Memory of BCG (The Prime)

QUILT-3.032: NMIBC Trial Rationale

N-803 Synergistic with BCG: Enhances Proliferation of NK and T Cells

Phase 1: NMIBC – Complete Response in 9 of 9 Subjects

With Durable 24 Month Response When N-803 is Combined with BCG (Trained Innate Immune Memory)

Phase I (N=9) A Study of Intravesical BCG in Combination With N-803 in Patients With Non-Muscle Invasive Bladder Cancer

N-803 + BCG Inducing 24-Month Durable Response

Durable Complete Responses (CR) or No Recurrence (NR) in 9 out of 9 Patients

Dose			ResponseAssessments							
(intravesicular instillation)	Patient	Stage	W12	6M	9M	12M	15M	18M	21M	24M
	1	Pap T1	CR*	CR	CR	CR	CR	CR	CR	CR
100 µg	2	Рар Та	CR*	CR	CR	CR	CR	CR	CR	CR
	3	Pap T1	CR*	CR	CR	CR	CR	CR	CR	CR
200 µg	4	Pap T1	IC	CR*	CR	CR	CR	CR	CR	CR
	5	CIS	IC	IC	IC	CR	CR	CR	CR	CR
	6	Pap T1	CR*	CR	CR	CR	CR	CR	CR	CR
400 µg	7	Pap T1	CR*	CR	CR	CR	CR	CR	CR	CR
	8	CIS	CR*	CR	CR	CR	CR	CR	CR	CR**
	9	Рар Та	CR*	CR	CR	CR	CR	CR	CR	CR

9 of 9 (100%) Patients Disease-Free at 24 Months

BCG naïve alone (SoC): Historical response rate is 55-75% at 3-6 months post BCG alone Based on this data, FDA granted Fast Track Designation to the Pivotal Trial *CR termed as No Recurrence (NR) in Papillary Disease **Negative Cystoscopy Inconclusive Cytology IC: Inconclusive Cystoscopy

ONCOMMUNOLOGY	
2021, VOL. 10, NO. 1, e1912885 (7 pages)	
https://doi.org/10.1080/2162402X.2021.1912885	

ORIGINAL RESEARCH

OPEN ACCESS

Taylor & Francis Taylor & Francis

Safety, Tolerability, and Long-Term Clinical Outcomes of an IL-15 analogue (N-803) Admixed with Bacilius Calmette-Guérin (BCG) for the Treatment of Bladder Cancer

Charles J. Rosser@*, Sergei Tikhonenkov*, Jeffrey W. Nix*, Owen T.M. Chan*, Irina lanculescu*, Sandeep Reddy4*, and Patrick Soon-Shiong*

*Clinical & Translational Research Program, University of Hawaii Cancer Center, Honolulu, Hawaii; *Department of Urology, University of Alabama, Birmingham, Alabama; *ImmunityBio, Inc., Culver Gity, California; *NantHealth Inc, Culver City, California

ABSTRACT

Intravesical BCG is active against non-muscle invasive bladder cancer (NMIBC), but bladder cancer will recur and even progress in a significant number of patients. To improve the response rate, N-803, an IL-15 superagonist was administered in combination with BCG. To evaluate the safety and efficacy associated with the use of intravesical N-803 and BCG in patients with BCG-naïve NMIBC. This phase 1b clinical trial used a 3+3 dose-escalation design. Participants were enrolled from July 2014 and July 2015, with followup and analyses through January 15, 2021. Eligibility criteria included histologically confirmed non-muscle invasive urothelial carcinoma of intermediate or high risk who had not received prior treatment with intravesical BCG (ie, BCG-naïve). All 9 participants met the eligibility criteria, received treatment according to the protocol, and were included in all analyses. Treatment was done once weekly for 6 consecutive weeks with bladder infusion of the standard dose of BCG, 50 mg/instillation, in combination with increasing doses of N-803 (100, 200, or 400 µg N-803 per instillation). No DLTs were noted in any of the dose cohorts. All adverse events (AEs) were manageable and less than grade 3. During the 2-year followup, all 9 participants were disease free. Furthermore, 6 y after treatment, all 9 participants (100%) were disease free with no evidence of disease progression and an intact bladder. This phase 1b trial found the combination of intravesical N-803 and BCG to be associated with modest toxic effects, low immunogenicity, and substantial prolonged antitumoral activity; phase 2 trials are in progress.

ARTICLE HISTORY

Received 3 March 2021 Revised 31 March 2021 Accepted 31 March 2021

KEYWORDS Non-muscle invasive bladder cancer; IL15; BCG

https://doi.org/10.1080/2162402X.2021.1912885

Clinically Meaningful Efficacy Results in Responders Cohort A (CIS)

	Responder Population (N = 58)	QUILT-3.032
Complete Response	Complete Response (n)	58 / 82
Complete Response	CR Rate (95% CI)	71% (59.6, 80.3)
Duration of Pooponoo	Median Duration of Response in Months (95% CI)	26.6 (9.9, NR)
Duration of Response	Duration of Response >=24 Months per KM	53% (38.0, 66.2)
Progression Free Survival	Bladder Cancer Specific Progression Free Survival >= 24 Months per KM	96% (86.2, 99.1)
Cystectomy Avoidance	Cystectomy Avoidance Rate in Responders	91% (53 / 58)
Cyclotonny / Woldanoo	Cystectomy Rate in Responders	9% (5 / 58)
	Cystectomy Rate in All Patients	16% (13/82)
Safety Profile	Treatment Related SAEs	1%
	Immune Related SAEs	0%
	Treatment Related Grade 4 or 5 AEs	0%

QUILT 3032 26.6 Month Durable Complete Remission in CIS (Cohort A)

100 Duration of CR ≥ 12 months 61.6% (95%Cl 47.3, 73.1) Patients with Complete Response (%) Median Duration of CR = 26.6 months (95% CI 9.9, Not Reached) Median Duration of CR 80 26.6 Months 60 40 Ongoing Response, Still on Study Duration of $CR \ge 12$ months Median Duration of CR 20 21 / 58 (36%) (26.6 months) 0 12 15 24 27 30 6 9 18 21 0 3 At time of first CR Time After First CR (months) Kaplan-Meier Estimate \times Censored

Duration of Complete Response

QUILT 3032 Compared to KEYNOTE-057 in NMIBC BCG Unresponsive CIS Disease

Primary Endpoint: Efficacy

Study	N-803 + BCG QUILT-3.032		Pembrolizumab (Balar 2021, ODAC	
STUDY DESIGN	Pivotal phase 2/3 open-label		Phase 2 open-lab (KEYNOTE-057	el)
Overall Efficacy Population	82		96	
Median Duration of Follow-up (months)	23.9		24.1	
COMPLETE RESPONSE (CR)				
CR Rate at Anytime				
CR Rate	71%		41%	
CR Rate 95% CI	(59.6, 80.3)		(31, 52)	
CR Rate in US Population % (n)				
CR Rate, United States Population	71% (58/82) (95% CI: 59.6, 80.3	3)	29% (10/34) (95% CI: 15.1, 47.5	5)
CR Rate, International	No Internationally Enrolled Subjects	7	47% (29/62) (95% CI: 34.0, 59.5	9)
CR Rate in High Risk Disease State % (n)				
CIS/HG Ta at baseline	81% (13/16) (95% CI: 54.4, 96.0)		29% (7/24) (95% CI: 12.6, 51.)	1)
CIS/T1 at baseline	67% (6/9) (95% CI: 29.9, 92.5	5)	42% (5/12) (95% CI: 15.2, 72.2	3)

Primary Endpoint: 30% CR rate with the lower bound 95% confidence interval at \ge 20%

Lower bound 95% CI of QUILT 3032 > Upper bound 95% CI of KEYNOTE-057

CR Rate of US Population Differs

Further evidence of a clinically meaningful difference in efficacy across multiple subgroups favoring N-803 plus BCG

COHORT A (CIS +/- Ta T1)

QUILT 3032 Compared to KEYNOTE-057 in NMIBC BCG Unresponsive CIS Disease

Cystectomy Avoidance

Study	N-803 + BCG QUILT-3.032	Pembrolizumab (Balar 2021, ODAC)
STUDY DESIGN	Pivotal phase 2/3 open-label	Phase 2 open-label (KEYNOTE-057)
Overall Efficacy Population	82	96
CYSTECTOMY AVOIDANCE		
Number of Cystectomy, n (%)		
Cystectomy Rate	13 (15.8%)	40 (41.6%)
Cystectomy Avoidance, No Cystectomy	69 (84%)	56 (58%)
Cystectomy in Non-Responders	8/24 (33%)	29 / 57 (51%)
Cystectomy After Initial CR	5 / 58 (9%)	11/39 (28%)

Higher cystectomy rate in KEYNOTE-057

KEYNOTE-057:42% subjects overall population and 28% subjects in responders
VSQUILT 3032:16% subjects overall population and 9% subjects in the responders

QUILT 3032 Compared to KEYNOTE-057 in NMIBC BCG Unresponsive CIS Disease

Safety: Immune Related AEs

Study	N-803 + BCG QUILT-3.032	Pembrolizumab (Balar 2021)		
Study design	Pivotal phase 2/3 open-label	Phase 2 open-label (KEYNOTE-057)		
Safety population	171	101		
Any adverse immune-mediated events	4.1% ^a	22%		
Treatment-related grade 3-5 immune- related AEs	0%	2.9%		
Treatment-related serious immune-related AEs	0%	4.9%		
Steroid Treatment for Immune Mediated Adverse Events (n)	0	7		

- N-803 + BCG Well Tolerated with AEs Comparable to BCG Alone
- Pembrolizumab with Systemic Immune-Related AEs Requiring Steroid Therapy

NK + T Cells IL-15 Fusion Proteins

Natural Killer Cells

- NK-92 Off-the-Shelf
- Autologous m-ceNK
- iNKT Cells

Memory B & T Cells

- Adenovirus
- Subunit Proteins
- Toll Receptor Activators
- saRNA

Late-Stage U.S. Clinical Trial Updates:

• Bladder Cancer

- Head & Neck Cancer
- Lung Cancer
- HIV
- COVID Vaccine

Natural Killer Cells

Exploratory Trial of PD-L1 t-haNK and Anktiva in Combination with Chemo Modulation in Metastatic Pancreatic Cancer

Phase 2 QUILT 88 trial of DAMP inducers combined with IL15 superagonist, N-803 and anti PDL1-t-haNK cell therapy more than doubles historical overall survival with 3rd to 6th line advanced Pancreatic Cancer

Tara Seery¹, Chaitali Nangia¹, Heide McKean² Leonard Sender³, Sandeep Reddy³, Patrick Soon-Shiong³ NCT04390399 ¹Hoag Cancer Center, Newport Beach, CA; ² Avera Cancer Institute, Sioux Falls, SD ³ ImmunityBio Inc. Culver City, CA.

BACKGROUND PD-L1 t-haNK RESULTS **KEY FINDINGS** Pancreatic cancer will claim an estimated 47,050 lives in NKG2D **Overall Survival, ITT Population** Censored the USA in 2020. In patients with advanced disease (>3rd Nant Cancer Vaccine (NCV) more than line) the median overall survival is 3 months. We **CD16** doubled median OS versus historical OS hypothesize that effective response against pancreatic cancer requires a coordinated approach that Median OS for 3rd Line: (Manax ASCO GI 2019) of 3 months after orchestrates both the innate and adaptive immune 6.2 months (N=34) >2L system. We further hypothesize that by orchestrating the • In QUILT 88 median OS in 3rd line subjects activation of the entire immune system, we could accomplish immunogenic cell death with durable (n=34) was 6.2 months (95% CI: 4.9, 9.8) 4th Line previously immunotherapy responses in this Historical Overall survival for ITT population (N=78) of 0.2 OS 5th Line unresponsive disease. We describe a novel combination ^{3rd} Line 3rd, 4th and 5th line is 5.8 months (95% CI: 3 Months immunotherapy protocol of low-dose chemo-radiation to enhance antigen cascade and reduce MDSC's, cytokine-4.0, 6.9) 0.0 PD-L1 CAR induced NK and T cell activation and proliferation via N-• Treatment related (TR) SAE's were 6 12 15 21 803 (Anktiva, IL-15 cvtokine fusion protein), and off-the-PD-L1 t-haNK Time (Months) uncommon (6%), no TR deaths were shelf PDL1-targeted high-affinity NK cell (PD-L1 t-haNK) NKG2D — 3rd Line Therapy >=5th Line Therapy 4th Line Therapy infusion. reported PD-L1/CD16/erIL2 • All treatments were performed as outpatient Median OS for ITT (≥ 3rd, 4th and 5th line); 5.8 months (N=78) STUDY EXPERIMENTAL TREATMENT Treatment ongoing for 25 patients TABLE 1 TABLE 2 Days 1 and 15, every 4 weeks: 2,3: Demographics, Nab-paclitaxel Demograph CONTACT related Adverse Gemcitabine Es), TR G3+AEs: info@immunitybio.com 310-883-1300 Main les (1,18), Days 1–5 and 15–19, every 4 weeks: Age • Cyclophosphamide Days 1, 8, 15, and 22; for first cycle only: Aae≥65 i K, Robbins Y, Allen CT, Lee JH, • SBRT (not to exceed 8 Gy, exact dose to be JW. PD-L1 targeting high-affinity s and target suppressive MDSC determined by the radiation oncologist) ≥5% (1):e000450. doi: 10.1136/jitc-247398 M:F ntigen receptor engineered NH Dav 8. every 4 weeks: n of T-cell escape variant cance 21;9:e002128. doi: 10.1136/jitc-

- Aldoxorubicin HCI
- N-803 (15 µg/kg SC)

Days 1, 8, and 15; every 4 weeks: PD-L1 t-haNK (~2 × 109 cells/dose IV) ECOG 0-1

Metastasis

		Any grade TR-AE >10%	TABLES 1,	
ics	N / (%)	Chills	47	Treatment
		Pyrexia	46	Events (A
62 (24, 78)	62 (24, 78)	injection site rxn	40	Median 3 cyc
		fatigue	36	
	42%	anemia	50	TABLE 3
		neutropenia	19	Grade >3 TR A
	58/42	thrombocytopenia	13	
		vomiting	28	anemia
	96%	nausea	26	neutropenia
		stomatitis	13	thrombocytopen
	0.20/	decreased appetite	14	thrombocytopen
	93%	infusion rxn	13	fatigue

	REFERENCES
	 Fabian KP, Padget MR, Donahue RN, Solocinski K, Robbins Y, Allen CT, Lee JJ Robizadeh S, Scon-Shiong P, Schull M, Hodge JW, PD-L1 targeting high-affilth NM (J. John M). Collisi indune direct and target supreservice supreservice and target supreservice. MINSC.
%	populations. J Immunother Cancer. 2020 May;8(1):e000450. doi: 10.1136/jitc- 2019-000450. PMID: 32439799; PMCID: PMC7247398.
41	 Lee MY, Robbins Y, Sievers C, et al. Chimeric antigen receptor engineered NK cellular immunotherapy overcomes the selection of T-cell escape variant cancer cells. Journal for ImmunoTherapy of Cancer 2021;9:e002128. doi: 10.1136/jitc- 2020.002128
29	 Wolfson B, Franks SE, Hodge JW. Stay on Target: Reengaging Cancer Vaccine in Combination Immunotherapy. Vaccines (Basel). 2021 May 15;9(5):509. doi: 10.3390/vaccines9050509. PMID: 34063388; PMCID: PMC3156017.
	4 Chu V Navar C, Jiang C, Basanhlum, IM, Saan Shiang D, Safrit IT, Jao DA

17

5

MCID: PMC8156017. Shiong P. Safrit JT. Lee DA Cairo MS. Combinatorial immunotherapy of N-803 (IL-15 superagonist) and dinutuximab with ex vivo expanded natural killer cells significantly enhances in itro cytotoxicity against GD2* pediatric solid tumors and in vivo survival of enografted immunodeficient NSG mice. J Immunother Cancer. 2021. Jul;9(7):e002267. doi: 10.1136/jitc-2020-002267. PMID: 34244307; PMCID PMC8268924

ASCO Annual Meeting June 2022

SCAN ME

NK + T Cells IL-15 Fusion Proteins

Natural Killer Cells

- NK-92 Off-the-Shelf
- Autologous m-ceNK
- iNKT Cells

Memory B & T Cells

- Adenovirus
- Subunit Proteins
- Toll Receptor Activators
- saRNA

Late Stage USA Clinical Trial Updates:

- Bladder Cancer
- Pancreatic Cancer
 - Head & Neck Cancer
- Lung Cancer
- HIV
- COVID Vaccine

Complete Response: 5th Line Metastatic Head & Neck Cancer

NANT Cancer Vaccine Therapies Used:

- haNK
- N-803
- Ad5 CEA
- Chemo

Memory-Like Cytokine Enhanced Natural Killer (M-ceNK) Cells from Peripheral Blood First-in-Human Clinical Trials

Day 1

Autologous Apheresis Patient White Cell Collection

Autologous Apheresis White Cells

Aliquot One Bag into 10 Lots for Cryopreservation

Single Aliquot For Enrichment Day 17

Concentrate

0.3 – 1.0 x 10⁹ NK Cells

Day 17

Autologous Cytokine Enhanced Natural Killer Cells for Transfusion 0.3 – 1.0 x 10⁹ NK Cells

First-in-human subjects dosed with M-ceNK in 2022

NCT04898543

Chordoma Cells Lines are Efficiently Killed by M-ceNK Cells

- Two chordoma tumor cell lines (UM-Chor-1, CH22) were incubated with M-ceNK cells.
- Tumor cell killing was assessed over 18h.
- Depicted is 30 minute killing.
- Timepoint after this showed 100% killing at all ratios containing M-ceNK cells.
- HD NK cells were assessed at a single 5:1 ratio.

CRADA with NCI, Unpublished

Orchestrating the Immune System

First-in-Class Comprehensive Platforms

NK + T Cells IL-15 Fusion Proteins

Natural Killer Cells

- NK-92 Off-the-Shelf
- Autologous m-ceNK
- iNKT Cells

Memory B & T Cells

- Adenovirus
- Subunit Proteins
- Toll Receptor Activators
- saRNA

Late-Stage U.S. Clinical Trial Updates:

- Bladder Cancer
- Pancreatic Cancer
- Head & Neck Cancer

- HIV
- COVID Vaccine

Median Overall Survival of Anktiva Compared to Any Therapy in Patients Who Progressed on Checkpoint Inhibitor

Additional Therapy Following Checkpoint Inhibitor Progression

Median OS: 6.1 Months

FIGURE 3 Post-progression survival after cessation of PD-1 monoclonal antibody (Ab) in 22 patients who received post-progression therapy and 72 patients who did not within 30 days of PD-1 Ab cessation.

doi: 10.3747/co.27.5495

Anktiva IL-15 Therapy Following Checkpoint Inhibitor Progression

Anktiva Selected by LUNG-MAP for 2nd Line Patients who Progressed on Checkpoint Therapy

LUNG-MAP

ImmunityBio Announces First Participants Have Been Enrolled in Lung-MAP Trial Studying Anktiva to Activate NK and T Cells in Non-Small Cell Lung Cancer

April 25, 2022

- Novel combination therapy of Anktiva, an IL-15 superagonist, and Keytruda targeted at patients with lung cancer who have failed checkpoint inhibitor therapy
- The study currently includes nearly 200 U.S. sites and will involve 478 patients when fully enrolled
- Nearly 237,000 new cases of lung cancer estimated to be diagnosed in the U.S. this year, making it the second most common cancer in the U.S.

NK + T Cells IL-15 Fusion Proteins

Natural Killer Cells

- NK-92 Off-the-Shelf
- Autologous m-ceNK
- iNKT Cells

Memory B & T Cells

- Adenovirus
- Subunit Proteins
- Toll Receptor Activators
- saRNA

Late-Stage U.S. Clinical Trial Updates:

- Bladder Cancer
- Pancreatic Cancer
- Head & Neck Cancer
- Lung Cancer

HIV

COVID Vaccine

ImmunityBio HIV Clinical Programs: Active Phase 1/2 Clinical Trials in Progress

Walter Reed Army Institute of Research

HENRY M. JACKSON FOUNDATION FOR THE ADVANCEMENT OF MILITARY MEDICINE Phase 1 B Cell Follicle Study Principle Investigator: Tim Schacker, UMinn NCT04808908 10 HIV+ (ART) patients treatment, ART + N-803 Fully Enrolled

Phase 1 ACTG 5386: N-803 +/- 2 bNABs in HIV+ subjects
Principle Investigator: Tim Wilken, Weill Cornell Medicine
NCT04340596
46 HIV+ patients on ART randomized to Arm A or B
Arm A: N-803 alone
Arm B: 2 bNAbs + N-803
Trial Active

Phase II Thailand Trial: N-803 in Acute HIV Infection
Study Chair: Denise C Hsu, MD PhD – Henry M. Jackson Foundation
NCT04505501
15 Acutely infected HIV patients on ART: N-803 Treatment Alone vs. Placebo

11 Enrolled (May 2022)

NK + T Cells IL-15 Fusion Proteins

Natural Killer Cells

- NK-92 Off-the-Shelf
- Autologous m-ceNK
- iNKT Cells

Memory B & T Cells

- Adenovirus
- Subunit Proteins
- Toll Receptor Activators
- saRNA

Late Stage USA Clinical Trial Updates:

- Bladder Cancer
- Pancreatic Cancer
- Head & Neck Cancer
- Lung Cancer
- HIV

ImmunityBio Vaccine Platforms Against COVID

Adeno hAd5 Human Adenovirus 5 DNA Based

- Spike & Nucleocapsid T Cells
- Memory B and Memory T Cells

mRNA saRNA Self Amplifying RNA

- Potent Antibodies
- Spike & Nucleocapsid T Cells
- Memory B and Memory T Cells

Nabisome* EDV

Endosome Delivery Vector

- Potent Antibodies
- Spike & Nucleocapsid T Cells
- Invariant NK-T Cells
- Memory B and Memory T Cells

Yeast RBD Subunit Protein RBD + 3M-052 Adjuvant

- Potent Antibodies
- Spike & Nucleocapsid T Cells

NK + T Cells IL-15 Fusion Proteins

Natural Killer Cells

- NK-92 Off-the-Shelf
- Autologous m-ceNK
- iNKT Cells

Memory B & T Cells

- Adenovirus
- Subunit Proteins
- Toll Receptor Activators
- saRNA

Late-Stage U.S. Clinical Trial Updates:

- Bladder Cancer
- Pancreatic Cancer
- Head & Neck Cancer
- Lung Cancer
- HIV
- COVID Vaccine